Exam DP-900: Microsoft Azure Data Fundamentals
微软MCF认证考试考什么?考试内容?
微软MCF认证考试是分科目的,现在我们要看得就是微软给出的MCF考试代码:DP-900 考试名称:Microsoft Azure Data Fundamentals的大纲,如果你通过了这科考试之后,将会获得Microsoft Azure Data Fundamentals的MCF证书
注意:由于云技术在不断发展,本大纲包含了DP-900微软MCF认证考试中进行衡量的技能。但是,MCF考试并能不确保包括这些技能的最新发展被包含在内,如想了解最新发展,请参阅相关技能的技术文档。
注意:每个技能下方列出的内容,说明我们将如何评估该技能。但是由于技术不断更新,此列表不能确保是确定的或详尽的。
注意:大多数问题都只涉及已经正式发布的功能。考试可能包含在预览阶段功能的问题(如果这些预览的功能是常用的)。
Describe core data concepts (15-20%)
- Describe types of core data workloads
- describe batch data
- describe streaming data
- describe the difference between batch and streaming data
- describe the characteristics of relational data
- Describe data analytics core concepts
- describe data visualization (e.g., visualization, reporting, business intelligence (BI))
- describe basic chart types such as bar charts and pie charts
- describe analytics techniques (e.g., descriptive, diagnostic, predictive, prescriptive, cognitive)
- describe ELT and ETL processing
- describe the concepts of data processing
Describe how to work with relational data on Azure (25-30%)
- Describe relational data workloads
- identify the right data offering for a relational workload
- describe relational data structures (e.g., tables, index, views)
- Describe relational Azure data services
- describe and compare PaaS, IaaS, and SaaS solutions
- describe Azure SQL family of products including Azure SQL Database, Azure SQL Managed Instance, and SQL Server on Azure Virtual Machines
- describe Azure Synapse Analytics
- describe Azure Database for PostgreSQL, Azure Database for MariaDB, and Azure Database for MySQL
- Identify basic management tasks for relational data
- describe provisioning and deployment of relational data services
- describe method for deployment including the Azure portal, Azure Resource Manager templates, Azure PowerShell, and the Azure command-line interface (CLI)
- identify data security components (e.g., firewall, authentication)
- identify basic connectivity issues (e.g., accessing from on-premises, access from Azure VNets, access from Internet, authentication, firewalls)
- identify query tools (e.g., Azure Data Studio, SQL Server Management Studio, sqlcmd utility, etc.)
- Describe query techniques for data using SQL language
- compare Data Definition Language (DDL) versus Data Manipulation Language (DML)
- query relational data in Azure SQL Database, Azure Database for PostgreSQL, and Azure Database for MySQL
Describe how to work with non-relational data on Azure (25-30%)
- Describe non-relational data workloads
- describe the characteristics of non-relational data
- describe the types of non-relational data
- recommend the correct data store
- determine when to use non-relational data
- Describe non-relational data offerings on Azure
- identify Azure data services for non-relational workloads
- describe Azure Cosmos DB APIs
- describe Azure Table storage
- describe Azure Blob storage
- describe Azure File storage
- Identify basic management tasks for non-relational data
- describe provisioning and deployment of non-relational data services
- describe method for deployment including the Azure portal, Azure Resource Manager templates, Azure PowerShell, and the Azure command-line interface (CLI)
- identify data security components (e.g., firewall, authentication, encryption)
- identify basic connectivity issues (e.g., accessing from on-premises, access from Azure VNets, access from Internet, authentication, firewalls)
- identify management tools for non-relational data
Describe an analytics workload on Azure (25-30%)
- Describe analytics workloads
- describe transactional workloads
- describe the difference between a transactional and an analytics workload
- describe the difference between batch and real time
- describe data warehousing workloads
- determine when a data warehouse solution is needed
- Describe the components of a modern data warehouse
- describe Azure data services for modern data warehousing such as Azure Data Lake Storage Gen2, Azure Synapse Analytics, Azure Databricks, and Azure HDInsight
- describe modern data warehousing architecture and workload
- Describe data ingestion and processing on Azure
- describe common practices for data loading
- describe the components of Azure Data Factory (e.g., pipeline, activities, etc.)
- describe data processing options (e.g., Azure HDInsight, Azure Databricks, Azure Synapse Analytics, Azure Data Factory)
- Describe data visualization in Microsoft Power BI
- describe the role of paginated reporting
- describe the role of interactive reports
- describe the role of dashboards
- describe the workflow in Power BI
©重庆睿一网络科技有限公司